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ABSTRACT

A homodyne phase shifter controlled doub~e-reflectometer
is rwesented. The abilitu for comvlex measurement. i.e.

th; knowledge of the ph;s; shifte; chamcieridics, ;S es-

tablished with fully unknown standards by only exploiting
reciprocity. If a system error correction is perfo?’med the

data needed foT error correction contain enough informa-
tion to deteTmine the phase shifter behavior. TheTefoTe no

additional standards are needed.

INTRODUCTION

Network analyzers are in widespread use. Mostly they are

based on the well-known heterodyne concept in which the

rf-signal is down converted into an if-signal to measure the

complex information, i.e. magnitude and phase. Never-

theless there exist other ways to realize such an equipment.

For example the six-port net work analyzer [3], which uses

power detectors or the so-called homodyne network ana-

lyzer [1] which uses a coherent detection. In contrast to

the power detectors the coherent detection is a linear de-

tection, thus providing a higher dynamic range. Unfortu-

nately the output signal is not proportional to the complex

but rather to the real part of the rf-information. A further

measurement is necessary to get the information about the

imaginary part, demanding for a 900-phase shifter. Phase

shifts p different from 90° are possible, but they must

also exactly be known. Although the homodyne concept

is very simple and uses an inexpensive rf-part the lack of

phase shifters with an a priori known phase shift is one

reason that homodyne concepts are not in use for com-

mercially available laboratory measurement equipments.

Therefore it has been investigated, if it is possible to de-

termine the effective phase shift of the imperfect device in

situ. With a procedure described below the homodyne de-

tector is indeed able to measure the complex information

of the rf-signal.

THEORY

General Description

Therefore a set-up is described which is capable to take

four complex measurements, see Fig. 1. Firstly we treat

four-port 1 depicted at the left side. It is introduced to

provide a measure of the wave propagating towards the

device under test (DUT) as well as a measure of the wave

emerging from the DUT. For example btA should be a
measure of the incident wave and b2A a measure of the

reflected wave. Due to imperfections like a finite directiv-

ity or mismatched ports both measurements are disturbed.

switchab[e

/
three-port
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fodr-port 1 four-port 2

Fig. 1: The principal block diagram of the set-up

Thus in our discussion any interior of the four-port is al-

lowed, if it is ensured that the readings of b2A and b4A are

independent from each other.

Now we introduce a fictive four-port which includes the

four-port 1 and the mismatches and losses of the detectors

connected. Therefore @A = a4A = O and it holds

blA = S~~AalA + S13Aa3A (1)

b~A = &~Aa~A + &3ACZ3A (2)

b3A = S31AU1A + S33A@A (3)

blA = S41ACZ1A + St3A@A . (4)

These four equations can be reduced in a straight forward

way to the relationship

(::) =(::: :::)(::$

In a similar approach four-port 2 is treated yielding

(::) =(::: :::)(::)

(5)

(6)
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For any two-port, i.e. a DUT or a calibration standard,

connected to the measurement ports

holds. Under use of the boundary conditions

(7)

bl = (L3A, al = b3,4, az = blB und bz = UIB (8)

the equation

(9)

is derived. In order to provide a second vector equation

of this type the three-port (Fig. 1) is turned to its second

position, position II. This might be the second position of a

microwave switch, but any alteration of its signal splitting

behavior is sufficient. However, a microwave switch may

be a prefered realization. The readings in the second state

of the three-port are indicated by the prime and fit

()b;~
A T B-l

()

b;B

b;A = b~B
(lo)

These two vector equations, eqn. 9 and eqn. 10, are com-

bined to the matrix equation

(2 %9=ATB-X:w “1)
which is finaly denoted as

‘TB-’=(22)($:%)-1‘g’M’12)
This description is usually found in network analyzer cali-

bration theory at the starting point. The matrices A and

B – 1 are. the well-known error-matrices in order to con-

sider the imperfections of the set-up.

If it is possible to provide the measurement matrix
M even with a homodyne set-up, one is able to pro-

ceed with any calibration procedure relying on a formalism

similar to eqn. 12. This might be for example the TSD-

[/

procedure 2, the TRL-procedure [3], the TMR or TAN-

procedure 4.

Establishin~ The Comdex Measurement Abilitv

In this section the complex measurement ability is estab-
lished without an additional expense of calibration stan-

dards. This means that either no further standards or only

fully unknown standards are required.

Therefore the behavior of one of the coherent detectors will

be examined a little further (Fig. 2), e.g. the detection of

bAz. If the phase shifter in the path of the local oscillator

is switched off, the detected voltage will be denoted as
Uz~ and if it is turned on, the same qu=tity will be

02.4. It can easily be seen that these two voltages can be
assembled to reconstruct the complex wave bZ,4 by

b2A = b2.4(p) = CY2A(U2A + p ~2A), ‘~f 0!2AU2A(P) , (13)

where Q,4 is a proportionality factor. At this time the

‘weighting factor’ p is still unknown. For example, if the

phase shifter is an ideal one, i.e. a minus-900-phase shifter,

p eqllak ~ and therefore i7z,4(p) = UZA + ~ tizA.

linear binary phase

“w”

Fig. 2: A homodyne detector with an effective binary

phase shift t1,2 = lt1,21ej~1,z

However, p has to be determined by some kind of cal-

ibration procedure. Therefore eqn. 13 and similar equa-

tions for the other complex waves will be substituted into

eqn. 11 leading to

( ) (t72,4(p) U;A(P) = A ~ B-I hip) ‘iB(p)

U4A(P) ujA(P) ‘4B(p) ‘jB(p) )

(14)

--+ MA(p) = A T B-l MB(p)

+ A T B-* = MA(p) M~(p)-l = M(p), (15)

in which the proportionality factors a, are included into

the error matrices A and B– 1. As the phase shifter is in

the common path of the mixers, see Fig. 3, the factor p is

always the same. This assumption is not always valid. But

if the phase shifter only shows a small parasitic amplitude

modulation and if the mixers are fairly equal the error is of

higher order small. NevertheIess, more general solutions

are also available in which each detector may have another

weighting factor, i.e. pl, p2>p3, p4. However, here only

the ‘simple-p-case’ is treated, the more general solution is

reserved to the extended version of this paper in [6].

In order to determine the weighting factor p two

completely unknown calibration two-ports with the wave

transmission matrices N1 and N2 are connected to the
measurement ports, leading to the measurement matrices
which are functions of p

Ml(p) = A N1 B-l, (16)

M2(p) = A N2 B-l. (17)

Taking the inverse of Ml(p) and multiplying by M2(p)

the new matrix is denoted as

Q(P) = Mz(p) Ml(p)-’ (18)

= (MZA(P) MZB(P)-l) (MIA(P) MIB(P)-l)-l
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with
~et ~(p) = det M2~(p) det Ml~(p)

det M2~(p) det Ml~(p) “
(19)

On the other hand it holds

det Q(p) = det (M2 M1-l) (20)

( )=det A N2 B-l (A N1 B-l)-l = w.

n

For this purpose a third reciprocal two-port is connected
and measured leading to M3A(p) and M3B(p). These

new matrices are combined with the existing ones leading
to two further equations

det M3~(p) det Ml~(p) –

det M3~(p) det Ml~(p) L O, (24)

det M3A(p) det M2~(p) –

det M3~(p) det M2~(p) ~ O, (25)

and finallv to a svstem of characteristic equations.

divider- I ‘l-n

A B
I I

*I I

Fig. 3: The homodyne double-reflect ometer

If N1 and N2 are the transmission matrices of reciprocal
but otherwise unknown two-ports their determinants equal
one,

det Nl = det N2 = 1, (21)

and therefore

det M2A(p) det MIB(p) – det M2B(p) det Ml~(p) ~ O
(22)

holds. Further algebraic treatment leads to a polynomial
characteristic equation of fourth degree

a4p4+a3p3+ a2p2+ alp+ ao=O (23)

which must be fulfilled by the weighting factor p. The
coefficients at in eqn. 23 are real because they have been
assembled by using measured real voltages only.

The characteristic equation 23 can be solved by various
methods. Good results have been obtained using Muller’s
method [5].

However, a linear solution is also possible, for example
to provide starting values for the non-linear solution. At
the expense of one more unknown standard the linear ap-
proach can be applied.

a]4p4 +a13p3 +a12p2 +allp+a10 ==0 (26)

a24p4 + a23P3 + a22P2 + a21 P + U20 “ O (27)

a34p4+a33p3 +a32p2+a31 P+a30=0 (28)

By eliminating p4 and p3 the system is reduced to

which has the two solutions pl and p2. Due to the fact
that p depends on the phase shift p which must be
different from multiples of 180° the solutions are always
complex. As the tit are real numbers the solution yields a
pair of complex conjugates, i.e. p2 = p~. This ambiguity
is easily removed by a rough knowledge of the design of
the phase shifter, i.e. one has only to decide whether the
phase shifter does provide a positive or a negative phase
shift. If eqn. 29 has two real roots both are useless and the
measurement should be reconsidered. On the other hand
in this case it might be possible that the assumption of
the simple-p-case is not valid. However, correct p-values
are always complex.

DISCUSSION

It has been investigated how the procedure works, if the
input data are not exact and how the performance drops
wit h increasing measurement errors.

There are in general two opposite cases to be regarded
which both are in practical use.

In the first case each detection channel gets information
about both the wave leaving the measurement port and

the wave entering it. Obviously the superposition must
be different in the two measurement channels of each of
the reflectometers. An example for this principle is the six
port reflectometer.

In the second case, i.e. the ordinary heterodyne four port
reflectometer, a considerable effort is made to separate the
two waves mentioned above. The mixture of information
which is of essential importance for the six port reflec-
tometer is regarded as an error.

The theoretical approach presented above provides no re-
strictions in generality. Thus the more general case of
arbitrary superposition is permitted. By regarding the
second case it should be stressed that two measurements,

e.g. U4A(P) and U4B(p), are decoupled from the mea-
surement ports. Hence eqn. 24 and eqn. 25 do not provide
any further information and the linear approach fails, but
the non-linear approach using eqn. ’23 still works.
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The linear solution starts to work if by some imperfec-
tions signals entering the measurement ports are coupled
to U4.4 (p) and U4B(p). Therefore it is concluded that for
anypractical set-up thelinear approach will nearly always
work.

However, thelinear approach should beomitted, because
the error sensivity increases rapidly if the system becomes
more and more ideal in the sence of separating the two
waves leaving and entering the measurement ports.

But also in the case of arbitrary superposition the linear

approach proves to be more susceptible to data errors.
Thereforelt 1s investigated how the calculated weighting
factor differs from the ideal one if the input data be-
come noisy. The simulations are performed under prac-
tical assumptions like losses, mismatches, finite directivi-
ties, swit thing dependend mismatches and cross talk, etc.

The weighting factor is assumed to be p = j = e ~go” .
The source provides 3 dBm of microwave power and the
noise level in the measurement channels is assumed to be
variable.

In Fig. 4a the standard error of the weighting factor mag-
nitude is plotted as a function of the noise level. It turns
out that the linear approach requires a signal to noise ra-
tio which is about 35 dB better than the direct solution of
the non-linear characteristic equation. The standard error
of the angle of the reconstructed weighting factor shows a
similar behavior, Fig. 4b.
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The comparatively poor behavior of the linear approach
has the consequence that it can at best serve as a starting
value. But the non-linear solution has proved to be reliable
even with arbitrary initial values.

However, the simulations show that the standard error
of both the weighting factor magnitude and its argument
remain for practical noise levels better than 0.0470 and
0.02° which is well below any measurement accuracy. This
means that measurement errors due to thermal noise or
quantisation noise are not able to influence the determi-
nation of the weighting factor noticeably.

CONCLUSION

Via the measurement of two aTbitTary and unknown but
Tecip Tocal networks, it is possible to determine the com-
plex weighting factor p , i.e. to establish the ability of
measuring complex information in a homod$me network
analyzer. For example this can be done by using a sliding
line of arbitrary characteristic impedance and unknown
length and arbitrary reflections.

In order to reduce the effort of connecting calibration staw
dards it is possible to use the data needed anyway to cal-
ibrate the set-up for system error removal. Calibration
procedures like TSD [2], TRL [3], TAN or TMR [4] pro-
vide well conditioned characteristic equations. Therefore
it is possible to establish the ability of complex measure-
ments without any additional expense and to proceed as
in a normal network analyzer calibration.
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Fig. 4 a: Standard error a(lpl) of the magnitude of

the weighting factor p versus noise level P.
b: Standard error a(arg (p)) of the mgument

of p versus noise level
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